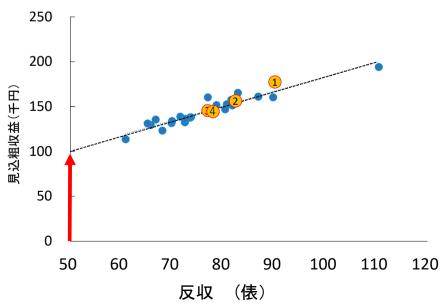
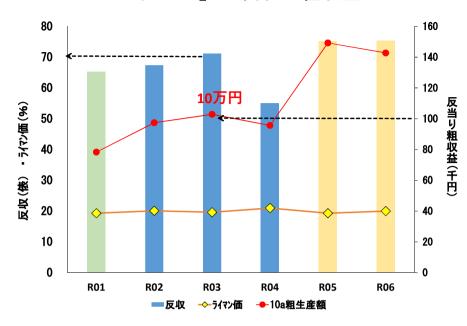
【第15回 JAおとふけ 冬期農業セミナー】


第3部 推進作物と新規作物の可能性

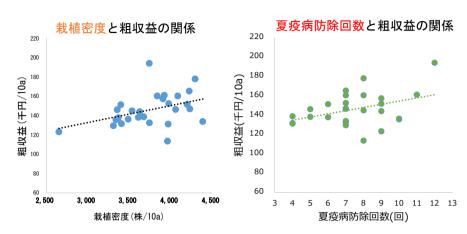
(11:15~12:00)

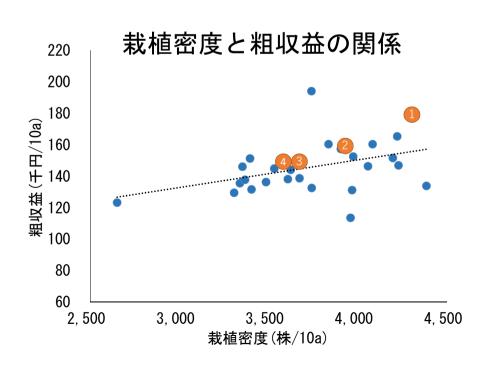

- ●澱原品種「コナヒメ」70俵/10a以上安定栽培方法
- ②さつまいも栽培実証結果 報告
- ❸直播ブロッコリ―栽培実証結果 報告

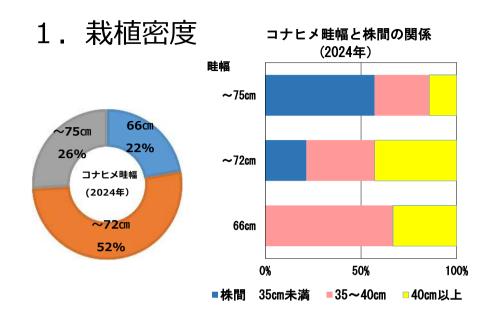
R6年コナヒメ粗収益と反収の関係

「コナヒメ」の反収と粗収益

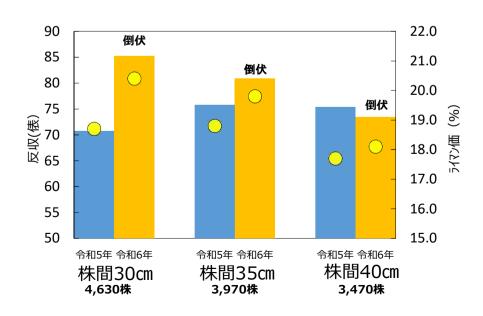
R1~R5 馬鈴しよの10a収益の比較(試算値)

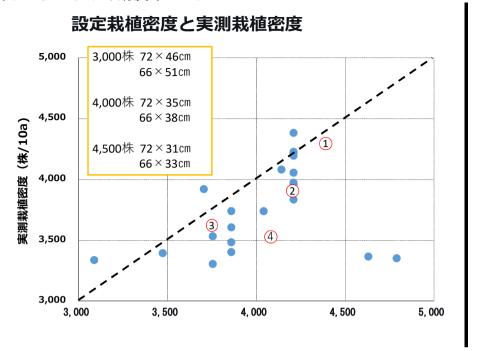

区分	反収	A:粗収益	B:直接経費	労働時間	C:A-B 差引収益
男爵薯	49.0俵	166,377円	80,367円	10.3hr	86,010円
トヨシロ	50.4俵	140,277円	78,206円	10.1hr	62,071円
コナヒメ	66.8俵	102,535円	54,097円	4.3hr	48,438円

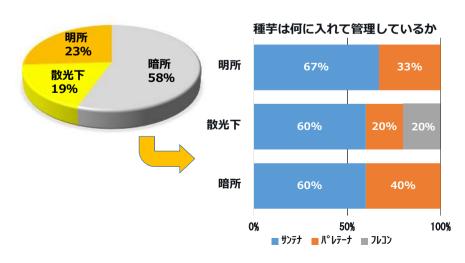

R6 コナヒメ 10a収益(見込)


54,097円 4.3hr 88,624円	5	142,721円	75.3俵	コナヒメ	
-----------------------	---	----------	-------	------	--

2024年 コナヒメ実態調査より

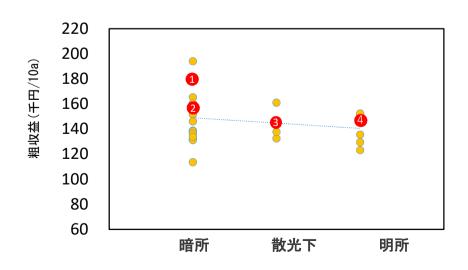

粗収益と関係が強いのは 栽植密度と夏疫病防除回数




令和5~6年コナヒメ株間試験の結果

2024年 コナヒメ種芋措置方法

種芋に光は当てているか


理想の芽だが 均一にこの状態にならない

伸びすぎた目

↑この状態が良いのでは?

粗収益と種芋措置方法の関係

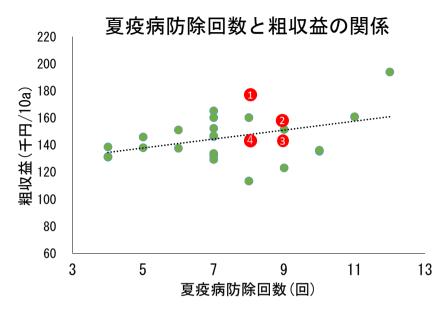
2. 夏疫病防除回数

茎葉を最後まで健全に保ち収量確保

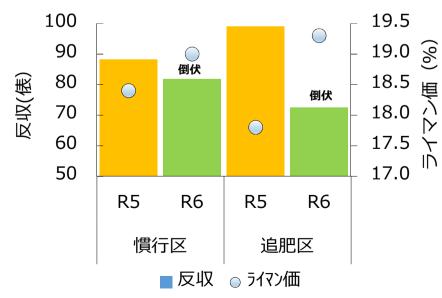
夏疫病に効果のある薬剤

- マンゼブ (グリーンペンコゼブなど)
- ・ホライズン
- ・フロンサイド
- TPN (ダコニールなど)
- ・アミスタ―
- ・シルバキュア

夏疫病発生環境 • 原因


①高温 発病適温26°C

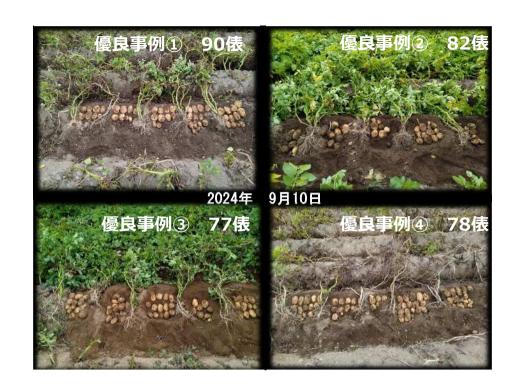
②開花後 生育の勢いがなくなった時


肥料切れ

しおれ・折損・軟腐病などのストレス

茎葉を最後まで健全に保つ

令和5~6年追肥効果確認試験の結果について


「コナヒメ」70俵以上 優良事例

単位:俵

区分	R2	R3	R4	R5	R6
優良事例 1	83	84	70	92	90
優良事例 2	76	76	72	100	82
優良事例	76	82	65	80	77
優良事例 4	74	84	60	88	78
農協平均	67	71	55	75	75

「コナヒメ」栽培基準

- •栽植密度 4,000株/10a 72×35 cm 66×38 cm
- •施肥量 BB859UF 100kg/10a N8. 0 P25. 0 K9. 0 Mg6. 0
- 防除の注意点 「花が終わると病気が発生する!」 「夏疫病」「軟腐病」の予防散布が重要

コナヒメ防除体系 夏疫病強化対策

令和6年 防除磨

令和7年 防除暦

IJTH	0十 例例自	IJTH	/ 一 例 例 日	
防除時期	薬剤名	防除時期	薬剤名	
6月中旬	グリーンベンコゼブ(400倍)	6月中旬	クプロシールド(1,000倍)	
6月下旬	ビレスコ(10,000倍) クプロシールド(1,000倍)	6月下旬	グリーンペンコゼブ(400倍)	
	グリーンベンコゼブ(400倍)		ビレスコ(10,000倍)、グリーンベンコゼブ(400倍)	
7月上旬	コルト(6,000倍)、フロンサイド(1,500倍) マスタピース(2,000倍)	7月上旬	グリーンペンコゼブ(400倍)、マスタピース(2,000倍	
7月中旬	カビナイス(600倍)、スターナ(1,000倍)	7月中旬	コルト(6,000倍)、グリーンベンコゼブ(400倍) スターナ(1,000倍)	
7月下旬	ウララ(4,000倍)、グリーンベンコゼブ(400倍) マスタピース(2,000倍)	7月下旬	フロンサイド(1,500倍)、マスタビース(2,000倍)	
,,,,,	グリーンベンコゼブ(400倍)	7/3 [1-9]		
8月上旬	グリーンペンコゼブ(400倍)	8月上旬	ウララ (4,000倍) 、ホライズン (1,500倍) クプロシールド (1,000倍)	
0 Л	グリーンペンコゼブ(400倍)	6万工司	グリーンベンコゼブ(400倍)	
8月中旬	グリーンベンコゼブ(400倍)	8月中旬	グリーンペンコゼブ(400倍)	
8月下旬	クプロシールド(1,000倍)	8月下旬	グリーンベンコゼブ(400倍)	
9月上旬		9月上旬	グリーンベンコゼブ(400倍)	
9月中旬	6,602 	9月中旬	グリーンベンコゼブ (400倍) 7,876	
2/3 T FJ	_		グリーンペンコゼブ (400倍)	
9月下旬	_	9月下旬	クプロシールド(1,000倍)	

2.さつまいもの特性

■高温や乾燥に強いうえ、栄養分の少ないやせた土地でも栽培可能。 R6産の積算気温は2,464℃

■肥料は少なくて良い→窒素施用量で5kg/10a 肥料高騰に対応可能 pHが低くても栽培は可能

■植付後の管理作業は少ない(植付と収穫が主体) 防除は1~2回程度(アブラムシ)

→ 積算気温(植付~収穫まで)2,400℃が理想 R6産の積算気温は2,464℃

「省力化」と「気象変動」に対応できる作物として期待

1.土地利用型作物としての検証

その1

府県の産地作付減少

労働力不足 高齢化 病害虫の発生

その3

温暖化の影響で北海道でも栽培は十分可能

積算温度+日照時間 但し、マルチは必須 その2

さつまいもの需要拡大 (焼き芋需要等)

**
北海道での産地化が 要望されている

その4

土地利用型作物?

作付面積の拡大 →機械化

3.さつまいも栽培実証

~試験内容~

- 上立	+.W+	⊥ 66	+11-12-14+		themedia	10a当たり 施用量	10a当たり要素量(kg/10a)		
生産者名	土性	土質	排水性	性 定植日 施肥銘柄		他用里 (kg/10a)	窒素	リン酸	加里
A圃場	黒色 火山性土	壌土	並	6月11日	S555	20	3.0	3.0	3.0
B圃場	黒色 火山性土	壌土	並	6月11日	N200	50	6.0	10.0	5.0

	畦幅 (cm)	株間 (cm)	10a栽植株数 (本/10a)	植付方式	マルチの種類		植付方法	収穫方法
A圃場	132		2,525	ながいも	黒マルチ			
A囲場	132	30	2,525	植付機械	黒マルチ (ミシン目入り)	斜め植え	らくらくイモヅル植え器	オフセット ハベスター
B圃場	144		2,315	手植え	黒マルチ			

本年は、2か所で20aで試験実施。品種は「べにあずま」を使用 A圃場:「ながいも植付機」、B圃場:「手植え」で実施

4.生育概況

∼植付前の準備~

栽培方法として「既存の機械使用」と初期投資を抑えること

培土施工後。培土高は20cm

マルチャーで培土を形成

6.生育概況

~植付後~

植付後、活着するまで一旦、葉が枯れます・・・

本年は、6月の降水量は平年対比で34%と干ばつ傾向 マルチ施工時、乾燥気味で土壌水分が少なく、乾燥による欠株(株 の枯死)が発生した・・・。 苗質が悪いと、活着が遅れ枯れる場合も

5.生育概況

~植付作業~

7.生育概況

~活着後から収穫~

8. 茎葉処理

∼収穫前の準備~

収穫1週間前に「茎葉処理」を実施(119日目)

- さつまいもは地上部の生育が旺盛のため、チョッパーによる 茎葉処理では不十分であった
- 茎葉処理が不十分な場合、マルチ除去作業に手間がかかる つる返し(蔓を持ち上げて不定根を切る)の作業が必要

10.実証結果

本年度は干ばつにより、植付後の欠株が多く、7月までの生育は 劣った。生育期間は127~129日。 収量は、10a当たり A圃場:2,020kg、B圃場:1,190kgの結果

マルチ

作業性を考慮し、「ミシン目入りマルチ」では、生育及び強度の面で 差は見られない。→温暖化による気温上昇下でもマルチは必須

茎葉処理

茎葉処理では、茎葉の量により細断が難しいため、地上部の生育 を抑制(「施肥量」及び「つる返し」)が必要

収穫体系

オフセットによる収穫では、①擦り傷、折れによる外観品質の低下 ②いもの落下(スナッピングローラ)も多い→オフセットは断念・・・

9. 収穫作業

収穫機は「ポテトハーベスタ(オフセット)」を使用

|生育日数126日目で収穫。作業は10a当たり、1時間で終了。 蔓離れが悪くコンベア内で「擦り傷」「折れ」の発生が多かった

11.今後の対応

①生産性

- ■気象変動(温暖化)に対応可能
- ■管理作業が少なく、容易に栽培可能
- ■地力が低くても栽培は可能

生産性について問題なし!

③ 茎葉処理方法

いもの蔓離れの促進

②苗の供給体制

苗の供給体制が必要

④収穫方法の再検討

傷による外観品質が低下が著しい

■直播ブロッコリーに取り組む理由として

新たな青果品目の模索

1戸当たりの経営面積の規模拡 大が進み、新たな土地利用型 作物の導入を模索

輪作体系に導入できる 作物の選択

多様化したニーズへの対応 🔍

加工向けの需要が拡大

国産ブロッコリーの 要望が高い

栽培条件の制約

根菜類(人参)が作付け困難な 土壌条件及び気象条件が異な る地帯での栽培検証

栽培条件を選ばない ことも重要なポイント

機械化体系の検証

省力化栽培技術 (機械一貫体系)

機械化を図り、省力化 を目指した技術確立

直播栽培の実証

~移植栽培から直播栽培への転換~

国内では例が少ない。機械化一貫体系が確立すると国内 初の栽培方法となる!?

汎用播種機(プランタ)を使用

移植栽培との違い

区分	畦幅 (cm)	株間 (cm)	10a株数
直播	66	25	6,060
移植	66	35	4,330

移植栽培よりも株間を 狭くして、密植で実施

【直播栽培の収量構成要素】

10a株数 6,060 ×

× 出芽率 85%

当芽率 35% × 収穫率 75% x 1株重 350g

× 歩留 70%

= 10a収量 946

直播栽培の重要なこと

播種精度が重要!精度が悪いと生育全般に影響

砕土はやや粗目に

砕土は粗目に仕上げる。 細かすぎると、播種後の 降雨でクラストの原因になる。

「好光性種子」で発芽のために光が必要。播種深度 は2cmとする。深いと出 芽が遅れ、生育も遅れる。

「土粒子」と「種子」、土粒 子同士を密着させ、毛管 水を種子に補給させる。

- ① 播種の方法は、「直播てんさい」と同じ考え方。
- ② 播種板は10穴 5.5mmを使用する。
- ③ コーティングが柔らかいため、破損する場合がある。

品種の選定

『耐暑性』と『機械収穫適性』の高い品種の検証

耐暑性品種

7月以降高 温となり、品 質の劣化が 著しい・・・

花蕾の位置 が高いほど 機械収穫し やすい

直播栽培の利点と欠点

利点

- ① 発芽まで10日程度
- ② 根張りが移植と比べて良好
- ③ 既存の播種機が使用可能
- ④ 肥料やけが少ない
- ⑤ 生育期間は移植栽培と同 等~早い(75日程度)

欠点

- ① 播種条件で出芽が揃わない
- ② 播種深度が深くなると出 芽率は著しく低下する
- ③ 直播栽培では除草剤(土壌 処理剤)がない

「直播」は「移植」と比べ て根量が多いのが特徴。 そのため、養分吸収効 率が高く、生育も移植栽 培より早くなる傾向

栽培管理①

雑草対策と生育促進のために中耕・培土を施工する。

栽培管理②

病害虫の発生は多いため、適期に防除をする!

ブロッコリーは病害虫の発生は多い。 害虫では、作物体の「カラシ油」の成分によりチョウ目が寄生する 作物体の窒素含有率が高いため、湿度が高まると腐敗しやすい

生育量に応じて散布水量を多くする。発生密度を高めないように早 期防除が必要。温暖化により年々病害虫の発生時期が早まっている。

1 生育の均一化と適期収穫

生育の個体間差があるため、花蕾の肥大がバラツキが多い

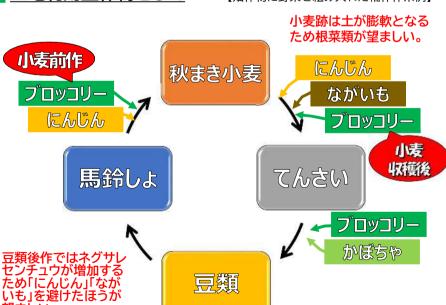
花蕾径未達 8cm 11cm 13cm 15cm 15cm以上 規格外 青果規格(8~15cm) 規格外

加工業務用(青果規格+15cm以上)

機械による「一斉収穫」のため、花蕾のバラつきが生じ、収量が安定しない 従来の「選択収穫」であれば、収量の確保は容易→省力化につながらない

【生育の均一化を図るためには・・・】

- ①播種深度の一定化と中耕による生育促進
- ②品種の選定 ③バイオスティミュラント資材の活用


大きな課題

機械一斉収穫

土地利用型作物として

【畑作物に野菜を組み入れた輪作体系例】

<u>▲ 今後の展開として</u>

町内のブロッコリー作付面積が減少している・・・

国産ブロッコリー の需要が高い

取り組みやすい 野菜

収穫の負担が 大きい

消費量の増加・指定野菜

初期投資が少ない

労働力不足

省力化に向けた革新的な栽培技術の確立

▼ 作付面積の維持・拡大

生食用または加工用の各需要に対応することができる